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A study of the local stability of a numerical algorithm for simulating two-dimensional 
small inverse-aspect-ratio plasma confinement leads to an amplification matrix closely 
related to the dispersion relation given by an analytic treatment. Both leapfrog and 
Lax-Wendroff schemes are carried through; the latter provides results in good agreement 
with the physics. 

1. INTRODUCTION 

The magnetohydrodynamical description of low-/3 axisymmetric toroidal plasma 
devices has received considerable attention in recent years [l-9]. Simultaneously, 
much effort has been expended in constructing computer simulation models 
[lo-131. With these one can determine the time evolution of nonstationary states 
and thereby study the properties of equilibrium configurations, such as the rate of 
steady state diffusion and the flows of heat and mass in the system. This possibility 
of following the nonlinear development of unstable modes greatly compliments the 
analytical work and provides understanding of the physical processes involved. 

A numerical procedure for following the time development of a system from 
its initial configuration was presented previously [lo]. Careful consideration was 
given to the satisfaction of certain constraints exhibited by the physical system; 
for example, the equations were solved in a manner that ensures conservation of 
charge neutrality and every effort was made to prevent the introduction of enhanced 
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numerical transport across the field lines. The explicit finite difference schemes for 
the individual equations were chosen separately with regard to attaining sufficient 
accuracy for the measurement of growth rates and for the detailed spatial resolution 
necessary for studying the physical processes involved. Long term application has 
demonstrated that the techniques involve no disastrous numerical instabilities, 
although the presence of numerical viscosity has demanded the adoption of different 
schemes in at least one application [12]. 

The choice of different finite difference schemes for the separate equations, 
however, makes numerical analysis of the simulation as a whole virtually 
impossible; however, the numerical stability of the various modes of oscillation 
present was demonstrated individually [IO]. On the other hand in most of the 
applications to which the code has been applied it is just this interaction between 
the various modes which provides the interesting physical phenomena, and one 
would like to be assured that the numerical simulation is providing an accurate 
and convergent representation of these effects. Here we suggest similar finite 
difference schemes for the representation of the various differential operators in 
each of the appropriate equations, and demonstrate the consistency and numerical 
stability of this simulation. 

In the next section we present the physical model, and the manner in which the 
simulation is to be attempted. In Section 3 we simplify this set of nonlinear 
equations to a form from which the well-known numerical analysis results can be 
applied. The leapfrog scheme is discussed in Section 4, while Section 5 is devoted 
to the simple two-step Lax-Wendroff scheme. Some simple results are given to 
illustrate the stability arguments. 

2. MODEL AND SIMULATION METHOD 

We describe the time evolution of the following set of simple hydromagnetic 
equations, appropriate to a toroidal low-13 plasma device [6]: 

dv 1 
fz=;JxB- vp, &A 

V+=fvxByJ, 

(1) 

(4 

(3) 

(4) 

g+v.pv=o, 
and 

V.J=O. 
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Here oth = (~IcT/M)~/~ is the thermal speed. We adopt the usual axisymmetric 
model with magnetic field given by 

where 
B = (&ljWf(r) ee + 4, 

N Ez 1 - E cos 8, E 2 r/R. 

(5) 

The geometry is illustrated in Figure 1. We decompose vectors into directions 
parallel to the magnetic field, perpendicular to the magnetic surfaces, and normal 
to both of these; then 

v = v,e, + v,B,(B x e,)/P + ub&(B/B2). (6) 

I 
I 
I 

MAJOR AXIS 
OF TORUS 1 

FIG. 1. The toroidal coordinate system. 

Equations (1) through (4) describe a coupled closed system which is solved to 
advance p, v, J and 4 in time, given their initial configurations. 

The method for solving these equations has been presented previously [lo]; for 
completeness we briefly summarise it again here. 

The component of Eq. (1) parallel to B is used to advance vb forward 
in time. Since the right-hand side of this equation in the perpendicular 
directions is small near equilibrium situations, we use these components to deter- 
mine J, . Knowing J, we evaluate the part of J,/B that varies along a field line by 
means of Eq. (4). We then use the parallel component of Eq. (2) to obtain the part 
of the electrostatic potential 4 which varies on a magnetic surface. The constant of 
integration in J,/B is determined from the condition that ~,8 be single valued. The 
surface constant (4) is advanced in time using the ‘r’ component of Eq. (2), the 
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‘s’ component of Eq. (1) and the charge conservation constraint (which is necessary 
for Jb to be single valued) 

I de NJ, = 0. (7) 

Once the total potential 4 = (4(r)) t &r, 0) h as b een evaluated at the new time, 
the perpendicular components of Ohm’s law are used to update v, . Finally, p is 
found at the new time from Eq. (3). Although it is not possible to completely time 
and space center each of the terms in the system of equations (the inertial terms are 
particularly difficult), second order accuracy can be approached by iterating. The 
scheme can be implemented in such a manner, however, that terms that are not 
correctly time-centered are small, and in fact experience has shown that in many 
cases iteration is not necessary. 

We have implemented this procedure by constructing an area-conserving grid 
with points equally spaced in !P and CD, where !P represents a magnetic flux and @ 
is analogous to a magnetic scalar potential. Thus, the program is applicable to 
realistic axisymmetric configurations, such as tokamaks and levitrons, where the 
magnetic surfaces need not be concentric or even circular. For the purpose of this 
discussion we use r2 and 0 for our grid, as shown in Fig. 2, so that our magnetic 
surfaces are concentric circles. We define the plasma quantities on each of these 
grid points at some particular time as indicated in the figure legend and introduce 
a straightforward finite-difference scheme (leapfrog or Lax-Wendroff) to advance 

FIG. 2. The two-step finite-difference grid. For the Lax-Wendroff scheme, grid (1) contains 
the values of p, v at even time steps and intermediate values of J, 4 at odd time steps, while grid 
(2) contains intermediate values of p, v appropriate to odd time steps and values of J, 4 at even 
time steps. For the leapfrog scheme both grids have equal weight. 
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them in time. In addition to geometry this scheme differs from the previous ones 
[lo, 121 in that the three parameters p, vb , and (4) are advanced in time with the 
same scheme rather than with different ones. To effect this requires staggering the 
quantities on the mesh somewhat differently from what was done before. An 
iteration scheme is also incorporated to update the perpendicular velocity so as 
to keep second-order accuracy in the time advancement. Finally, in the application 
of the Lax-Wendroff scheme we average over only the two neighboring points 
on the magnetic surface rather than the four neighboring points. This eliminates 
undesirable coupling of the surfaces so that the physics is better represented by 
the model. The program has been implemented in a Symbolic Algol form [14] 
as well as in a Fortran version [15]. 

3. THE SIMPLIFIED FINITE-DIFFERENCE EQUATIONS 

In order to discuss the consistency and stability of the finite-difference represen- 
tations of Eqs. (1) to (4), we make several reasonable approximations. 

For the first part, we restrict consideration to checking the “local” stability of 
the linearized equations by taking, for example, 

& zzz p; + pyj (8) 

(upper indices refer to the time step, lower to grid locations 1 < i < N, , 
0 < j < NB). Here the perturbations p”; are assumed to be small compared to the 
“steady state” part of the solution & . Similar linearizations hold for the other 
time-dependent variables. 

A second important simplification arises from the observation that in most 
physical situations there are two distinct physical time scales [6]: the time for the 
resistive diffusion of the plasma across the magnetic surfaces and that for the 
propagation of acoustic disturbances along the field lines. The former provides 
the major coupling of the various surfaces and occurs on a time scale very much 
longer than that of acoustic wave phenomena. To effect this simplification we 
adopt a small inverse-aspect-ratio expansion and assume 

so that, in particular, v’, N O(G). Since in all the equations affecting the stability 
analysis derivatives with respect to r occur only multiplied by v, , this expansion 
reduces the stability problem to a one-dimensional situation. Henceforth, the finite 
difference equations refer only to a particular magnetic surface; we therefore drop 
the ‘r’ index. We also assume that ~9’ = 0 on the surface of interest. This makes 
vu) = VP), the lowest-order poloidal velocity. s 
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These approximations reduce the problem of determining the stability of the 
numerical scheme to a set of finite-difference equations that advance in time 
u’ = [a(&/&] = Cj (E;s,j/Nj) which represents the ‘s’ component of the velocity 
perturbation, Ej the ‘b’ component, and pj the density perturbation, at each point j 
on the pertinent grid. We introduce the parameters 

(T = 0, K=l for Lax-Wendroff two-step scheme, 
CT = 1, kc=2 for leapfrog scheme, 

so that the same code applies to either numerical scheme. We use the usual centered- 
difference operator 6 and averaging operator TV such that, when operating on a 
function x, 

SXj” G Xjntl - XlJf-1 3 

pxjn = $(x7+, + xi”-1). 

In the analysis these operators act on some equilibrium quantities as well as the 
perturbations. Thus, on one grid 

p+1 = p-1 
+ 2At C Q,,,&j”~ (9) 

p";j"+i' = p;T;! f 2AttQ21.2j+lJ2n + Qw @;;+I + Qm %?+I , (10) 

-2n+1 
%i+l = a$;’ + 2At(Q31,2i+1P + Qa %$+I + Qa @$+I); (11) 

the two-step procedure is completed by filling in the alternative grid according to 
-2n u = CTU -2n--2 + (1 - CT) zP-~ + K At c Q12,2j+lp”;n+;l, (12) 

g;i” = q;i”-2 + (1 - CJ)/A~:~“-’ + K At(Q21,2j2izne1 + Q22 8j7iye1 + Q23 sf$$-‘), (13) 

and 
-273 

vzj = 06;;~~ + (1 - ~+,a;;-~ + K At(Q31,2j12n-1 + Qa2 S$j”-’ + Qa3 SC;;-‘). (14) 

The non-zero elements of the matrix Q are 

Q12,j = -~fh(S COS Oj)/p’O’R AB, 

Q21.j = -[(Spp)) - 2rp(‘)(S cos O,)/R]/2r AB, 

Q22 = -@/2r AB, 

Q23 = --fpc0)/2r AlI, 

Qslsj = -(6&‘)/2r de, 

Qs2 = -jiifh/2p’0’r A8, 

Qa3 = z$)/2r de. 
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Here we have adopted the notation employed in the analytic work [6] of carrying 
bracketed superscripts to indicate the appropriate order in the inverse-aspect-ratio 
expansion. 

The stability analysis proceeds in the usual way [16]. We expand all quantities 
in Fourier series. This is especially useful for this model because the E expansion 
makes the equilibrium expressible in terms of simple trigonometric functions. Thus, 

pj = p(O) + ~2’ sin Bj + pe(l) cos Bj + ... , (15) 

with similar expressions for the other equilibrium functions. These coefficients are 
given in reference 6. Likewise, 

fjj” = +j,n + sin(k0,) + Eyk cos(k0,)). (16) 

Then, substituting these into the finite difference equations and using the ortho- 
gonality properties of the trigonometric functions, we obtain a set of algebraic 
equations relating the Fourier modes of the perturbed quantities at different times. 
Defining the amplification factor for each mode 

we obtain the amplification matrix (A) for the finite-difference scheme. Stability in 
the usual sense (Neumann’s sufficient condition [16]) requires that the spectral 
radius of A satisfy p(A) < 1 + O(ot). Alternatively, by demanding that the system 
of algebraic equations obtained has a non-trivial solution, we recover the finite 
difference analogue of the analytical dispersion relation. The two approaches are 
equivalent of course, but it is physically instructive to pursue the latter course. 

4. THE LEAPFROG SCHEME 

Here each step in the procedure has equal weight, so that the main and auxiliary 
grids contain approximations to the solution at even and odd timesteps. We write 
the amplification factor for each step as t(k), so that 

Now straightforward application of the steps described above leads to the set of 
coupled equations 
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D.XG 
Y 

0 .fGl& -__ 
p(O)r r 

.fG 
p’O’r 

= 0, 

where 
rz (5”- l)Afl 

2fAtsinkAO 

- 

0 

fp(O) 
r 

0 
Jl) 0 .~ 
r 

r 

UO 

P”sk 

p”Ck 

v"sk 

VCk 

(17) 

(18) 

and 6k1 is the usual Kronecker delta. Modes with k > 2 decouple from those with 
k = 0, 1 and from each other. As in the analytic work it is convenient to discuss 
the two cases separately. 

Looking only at the k = 0, 1 modes, we recover in the limit A0 ---f 0 (with 
constant At) the analytical dispersion relation for small amplitude waves [6], with ir 
taking the place of the (complex) frequency w of the real physical mode. Therefore 
stability conditions on At and A0 can be obtained by expressing the amplification 
factor in terms of the actual physical frequency. From Eq. (18) then, 

with 
f2 $ (L/a) t - 1 = 0, (1% 

Hence 
a = A8/2At sin Ad. 

if = -(iw/2a) & (1 - ,2/4,2)1/Z. (20) 

If w, < 01 (i.e. the Courant-Friedrichs-Lewy condition [16], wI At/A0 < 1) we 
have 

(21) 

Thus each physical mode gives rise to two numerical modes, one of which behaves 
correctly. If wI # 0 the other may soon completely dominate the calculation. This 
is the classic example of a “weak” instability-Morton [17, 181 has called this the 
interlaced mesh instability. For a purely growing mode the parasitic solution will 
decay in a time comparable to the rise time of the real physical instability and little 
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harm will be encountered. On the other hand, the physically damped modes will 
not be simulated correctly by this scheme, and the mesh instability will cause violent 
fluctuations between the two grids if allowed to persist. 

In our physical model both damped and growing modes are present (in fact it is 
the transfer of energy between these modes which provides for the instability), 
and these may be propagating or stationary. In general, then, the extra numerical 
modes cannot be tolerated and must be filtered out before they have grown too 
large. The growth rates of these unwanted modes are comparable with the period 
of oscillation, and our experience has been that to operate anywhere near the 
maximum ratio of At/de allowed by the Courant-Friedrichs-Lewy condition 
(applied to the acoustic oscillations), the unwanted mode must be destroyed every 
few time steps. Simple averaging across the two grids provides the easiest way to 
do this, but increases the truncation error-this is unacceptable if done too often. 
Earlier programs [ 10, 121 did not suffer from these modes because their algorithms 
provided tighter coupling of the two grids. It is interesting to note that a scheme 
using the auxiliary equations (12) to (14) with cr = d/5 - 2, K = ~‘5 - 1 for 
both grids, does not suffer from this difficulty since the unwanted mode always 
decays; unfortunately the scheme is only first order accurate in A 0. 

Turning to the modes with k > 1, we note that no matter how small we make 
de, we can always find a k such that sin k Ae/A0 is large. Thus 01 can be small for 
any choice of At and instability can occur. Fortunately, in the model the damping 
of the physical modes is very slow (on the diffusion time scale -e3 whereas the 

0 IO 20 30 40 
STEP NUMBER 

FIG. 3. Plot of average rotation velocity as a function of time for a toroidal system with 
nmax = 1Or3 cm-3, T = 25 eV, B = lo4 G, a = 5 cm, R = 100 cm, f = l/30, and classical resis 
tivity. On the plotted surface, r = 4.62 cm, n = 4 . 1Ol2 cm-3, n’ = -8 * 1OX1 cm-4, so that 
from Ref. 6 the oscillatory modes should damp and the rotational mode should grow with 
y - 6 . lo3 set-I. Each mesh has six radial and eight azimuthal surfaces; dt = 4 ~LS. This 
illustrates the growth of the unwanted computational mode when employing a leapfrog scheme 
(dotted curve) where damped physical modes are present. The Lax-Wendroff scheme (crossed 
curve) gives a more faithful representation of the physics. The observed growth of oscillations 
may be due to the size of the time step. 
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k = 1 modes vary as l ) so the extra numerical ones may cause little difficulty. 
Since they have short wavelengths there may be some dispersion and phase 
mixing introduced by the finite mesh. Introduction of viscosity into the 
momentum conservation equation provides an additional physical dissipation 
mechanism that strongly damps them. This was incorporated into previous 
programs [12]. In any event these unwanted modes provide a source of worry in 
applying any leapfrog scheme. 

In Fig. 3 we illustrate the growth of the unwanted mode for this problem. Here 
we have plotted the value of ve , averaged over a magnetic surface, as a function 
of time. The oscillations represent the passage of geodesic waves (acoustic waves 
modified by the toroidal nature of the system) [19] whose amplitude is actually 
damped as time proceeds. Superimposed on this oscillation is the build-up of 
rotation in the B-direction-the so-called rotational instability [l-6]. The wild 
fluctuations experienced by the leapfrog scheme soon grow to such an extent that 
they completely dominate the real calculation and make the density go negative. 

In practice then (for our particular problem) the leapfrog scheme is only useful 
if we take time-steps very much shorter than the smallest period of oscillation of 
any mode present. To follow the growth of unstable modes this is too restrictive, 
and in the next section we see how the Lax-Wendroff scheme improves the situation. 

5. THE LAX-WENDROFF SCHEME 

By repeating the procedure described above we obtain a numerical dispersion 
relation similar to Eq. (16), but with 

II& sin 248 6 D12 = --~ 
p’O’R 240 kl 2 

(1) 
Dal+&+) 4.h sin/ 6kl + 
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D 
24 

= 2Atfpco)v~) sink de 
r2 A0 ’ 

(‘) sin 2k A 8 
D,, = _ fL 240 , r 

D31 = d! !&$t Sk1 
r 

j At f~(~)dl,’ vp 2~~‘) 
r [ r i R 

- !g)](+L,, (y,,) 

(l) Da2 = F 

D = (A - 1) + A~(z$)~ +f”& 
33 ___ 2At r2 

(‘) sin 2k A0 
D34=f@- 240 , r 

D 
35 

= 2Atfp(‘)vF) sink de 2 
r2 ( 1 de ’ 

D 
41 

= 

D 
42 

( si;f8 )2 *,, ,’ 

D43 = fvk sin2ygile , 
p(O)r 

D,, = @ - ‘) + At(&j2 + f”v$) sin k A0 2 
2At r2 ( i de ’ 

D,, = ‘y’ sin;dkgile , 
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D 
51 

f4l 
D,, = - 

sin2kLlB 
p(O)r 2419 + ,P’iPr 

At z&v~~ ( si;i0 )2 6,, , 

D = (A - 1) + At($j2 +f2v&) sink A0 2 
55 2At r2 - AB ( ) ’ (22) 

Again the k = 0,l modes couple to give a 5 x 5 system, while the modes fork > 2 
separate and yield a fourth-order one and it is convenient to discuss the two sets 
separately. 

(i) k = 0, 1 

Examination of the elements of D shows that as At, At9 ---t 0 each element behaves 
asymptotically as 

Dij - Dk”” + O(At, Adz). (23) 

Thus (in the limit) the numerical dispersion relation behaves exactly as the 
analogous analytical dispersion relation [6] Dipjnys, and we may make the identi- 
fication 

iw + (A - 1)/2 At. (At, A8 + 0). (24) 

Employing a perturbation expansion for the roots, we can easily establish the 
validity of an asymptotic expansion for the amplification factor of the form 

(A - 1)/2 At = io + cr,At+ol,At2+~1A82+B2Ae3+.... (25) 

Convergence follows for the lowest frequency modes. In the absence of higher 
k modes Eq. (25) provides “practical” stability conditions in the sense that the 
coefficients 01~ , pa (which can be easily evaluated, at least numerically, given the 
eigen-values and eigen-vectors of Dipys) determine the departure of the numerical 
solution from the real physical situation. 

(ii) k 3 2 

To establish the convergence of the scheme we must show that there are no 
modes present which experience a growth rate which does not asymptotically 
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approach the correct physical value. From Eq. (22) we see that the arguments 
given above cannot be carried over when k > 2; there will always exist some k 
for which k At’ M m/2 (with n integral) so that (25) becomes 

(A - 1)/2 At = iw + ~(At/d8~) + T,-,(A~/A~~)~ + 01~ At + PI Af?2 + .+.. (26) 

Clearly this shows convergence in the limit At, A6’ + 0 provided At/de2 -+ 0, but 
the practical stability criterion At < Ao2, usually associated with parabolic 
rather than hyperbolic systems, is very restrictive. 

In fact we can demonstrate stability in much less stringent conditions [20] by 
rewriting the system of equations (9)-(14), for k 3 2 as 

-2n+1 - -2n-1 _ Y -Y czA . 8yzn, (27) 

Y -277 = /472n-l) _ &A . @2n-1, (28) 

where 

and 

The amplification matrix for this system, Eq. (27) and (28), is 

G=I+2iW*(iW-coskABI), (29) 

where W = aA sin k A@. Now for any vector solution y we can easily show that 

1 y* * G - y I2 = (II y II2 - 2 11 W . y II”)” f 4 cos2 k A0 1 y* * W . y j2 

cos2kAB 

(11 y II is the norm of y). Since // W . y /; < jl W/I /j y I/, we see that the Lax-Wendroff 
condition for stability [16] is satisfied provided 
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the Courant-Friedrichs-Lewy condition (as may have been expected). Thus we 
have the stability condition 

Reference to figure 3 shows that the Lax-Wendroff scheme provides a more 
realistic simulation of the physical conditions prevailing. 

6. DISCUSSION 

In this work we have carried through a local stability analysis [16] of two 
numerical schemes, leapfrog and Lax-Wendroff, for a special hydromagnetic 
model for two-dimensional low pressure plasma confinement in a system with a 
large aspect ratio. The exciting feature is that the resulting dispersion relation 
which determines the amplification factor is strikingly similar to the analogous 
dispersion relation obtained by an analytic calculation [6]. 

The most essential feature of the small inverse-aspect-ratio expansion is the 
decoupling of the magnetic surfaces (because v, N G) which reduces the stability 
discussion of the two-dimensional simulation to a one-dimensional problem. This 
separation is due to the fact that the diffusion time is long compared to the time 
scales of particular interest. Since this should be the case for an operating thermo- 
nuclear reactor, the physics makes our conclusions concerning the applicability 
of the code a little more reasonable than the analysis would indicate. It would be 
interesting to attempt a stability analysis of the two-dimensional code without 
assuming small resistivity. The difficulty lies primarily in the fact that one would 
have no idea what answer to expect from the physics. 

The small inverse-aspect-ratio expansion also separates the k 3 2 modes from 
those with k = 0, 1 and from each other. Thus, relating X and w by Eq. (24) and 
taking dt and dB sufficiently small makes the amplification matrix identical to the 
physical dispersion relation. Although this identification would probably not be 
exact in more general systems [14, 151 where the mode decoupling doesn’t occur, 
it is reasonable to expect that the numerical scheme should still closely approximate 
the physics. 

Finally, all local analyses like the one given here are subject to the limitation 
that we can infer nothing for cases where the “perturbation” p” becomes as large 
as the “steady-state” value p. This difficulty is common to many stability analyses. 
It may be more serious in the specific applications being made of these codes than 
in other cases because “shocks” or regions where large density variations exist 
can develop in the system [7, 91. By properly choosing new functions for the p’s 
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it is possible that conditions for stability of the code even in these extreme cases 
can be studied. In the absence of such work it is comforting to know that the analy- 
tically predicted shock solutions have been observed in the simulations [12]. 

To summarize then, we have adopted a simple small-inverse-aspect ratio model 
and shown that provided the Courant-Friedrichs-Lewy condition [16] is satisfied, 
a simple Lax-Wendroff scheme possesses local stability in the sense that pertur- 
bations from what would be predicted by the analytic equations should not grow. 
The amplification matrix for the simulation is closely related to the analogous 
dispersion relation obtained from the analytic treatment such that it is reasonable 
to assume that the numerical algorithm should be good for more general physical 
models. 
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